Quantum Computing Challenge - Day 15: Quantum Fourier Transform & Applications — Unlocking Quantum's Hidden Frequencies
This post is part of my 21-day quantum computing learning journey, focusing on the Quantum Fourier Transform (QFT) - one of the most fundamental building blocks in quantum algorithms. Today we’re exploring how QFT reveals hidden periodicities in quantum data and serves as the foundation for revolutionary algorithms like Shor’s factoring algorithm..
Progress: 15/21 days completed. QFT Theory: ✓. Phase Estimation: ✓. Shor’s Algorithm Foundation: mastered.
The Quantum Fourier Transform: A Gateway to Quantum Advantage
The Quantum Fourier Transform represents one of quantum computing’s most elegant mathematical tools. While the classical Discrete Fourier Transform (DFT) requires O(N log N) operations using the Fast Fourier Transform, the QFT achieves the same result with just O(log²N) quantum gates - an exponential speedup that unlocks quantum algorithms’ true power. But QFT isn’t just about speed. It’s about revealing the hidden frequency structure of quantum states, enabling us to detect periodicities that would be impossible to find classically. This capability forms the backbone of quantum algorithms that threaten modern cryptography and promise to revolutionize optimization.
Mathematical Foundation: Classical vs Quantum Fourier Transform
Classical Discrete Fourier Transform
For a classical sequence {x₀, x₁, ..., x_{N-1}}
, the DFT produces:
Quantum Fourier Transform
For a quantum state |x⟩ = Σ_{j=0}^{N-1} x_j|j⟩
, the QFT produces:
QFT operates on quantum amplitudes rather than classical values, enabling superposition-powered parallelism.
Implementing QFT: From Theory to Qiskit Code
import numpy as np
from qiskit import QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram, plot_bloch_multivector
import matplotlib.pyplot as plt
from math import pi
def qft_rotations(circuit, n):
"""Apply the rotations for QFT on n qubits"""
if n == 0:
return circuit
n -= 1
# Apply Hadamard gate to the most significant qubit
circuit.h(n)
# Apply controlled rotations
for qubit in range(n):
circuit.cp(pi/2**(n-qubit), qubit, n)
# Recursively apply QFT to the remaining qubits
qft_rotations(circuit, n)
def swap_registers(circuit, n):
"""Swap qubits to reverse their order"""
for qubit in range(n//2):
circuit.swap(qubit, n-qubit-1)
return circuit
def create_qft_circuit(n_qubits):
"""Create a complete QFT circuit"""
qc = QuantumCircuit(n_qubits)
# Apply QFT rotations
qft_rotations(qc, n_qubits)
# Swap qubits to get correct output order
swap_registers(qc, n_qubits)
return qc
def demonstrate_qft_3qubits():
"""Demonstrate QFT on a 3-qubit system"""
print("Quantum Fourier Transform - 3 Qubits")
print("=" * 50)
# Create 3-qubit QFT circuit
qft_3 = create_qft_circuit(3)
# Create test circuit with initial state
test_circuit = QuantumCircuit(3, 3)
# Prepare interesting initial state: |101⟩
test_circuit.x(0) # Set qubit 0 to |1⟩
test_circuit.x(2) # Set qubit 2 to |1⟩
test_circuit.barrier()
# Apply QFT
test_circuit.compose(qft_3, inplace=True)
test_circuit.barrier()
# Add measurements
test_circuit.measure_all()
print("QFT Circuit Structure:")
print(qft_3.draw())
print("\nComplete Test Circuit:")
print(test_circuit.draw())
# Simulate
backend = Aer.get_backend('qasm_simulator')
job = execute(test_circuit, backend, shots=1024)
result = job.result()
counts = result.get_counts()
print("QFT Output Distribution:")
for state, count in sorted(counts.items()):
print(f"|{state}⟩: {count} times ({count/1024:.1%})")
return test_circuit, counts
def quantum_phase_estimation():
"""Implement Quantum Phase Estimation using QFT"""
print("\nQuantum Phase Estimation Protocol")
print("=" * 50)
print("Estimating eigenvalue of Z gate: λ = e^{2πiφ} where φ = 0.5")
# Create circuit: 3 ancilla qubits + 1 eigenstate qubit
n_ancilla = 3
qc = QuantumCircuit(n_ancilla + 1, n_ancilla)
# Step 1: Initialize eigenstate |1⟩ (eigenstate of Z with eigenvalue -1)
qc.x(n_ancilla)
qc.barrier()
# Step 2: Create superposition in ancilla qubits
for i in range(n_ancilla):
qc.h(i)
qc.barrier()
# Step 3: Apply controlled unitary operations (Z^{2^j})
repetitions = 1
for counting_qubit in range(n_ancilla):
for i in range(repetitions):
qc.cp(pi, counting_qubit, n_ancilla) # Controlled-Z
repetitions *= 2
qc.barrier()
# Step 4: Apply inverse QFT to ancilla qubits
qft_inverse = create_qft_circuit(n_ancilla).inverse()
qc.compose(qft_inverse, range(n_ancilla), inplace=True)
qc.barrier()
# Step 5: Measure ancilla qubits
qc.measure(range(n_ancilla), range(n_ancilla))
print("Phase Estimation Circuit:")
print(qc.draw())
# Simulate
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1024)
result = job.result()
counts = result.get_counts()
print("Phase Estimation Results:")
for bitstring, count in sorted(counts.items(), key=lambda x: x[1], reverse=True):
# Convert binary to decimal and then to phase
phase_int = int(bitstring, 2)
estimated_phase = phase_int / (2**n_ancilla)
print(f"|{bitstring}⟩: {count} times → φ ≈ {estimated_phase:.3f}")
return qc, counts
def shor_algorithm_demo():
"""Demonstrate key components of Shor's algorithm using QFT"""
print("\nShor's Algorithm Foundation - Period Finding")
print("=" * 50)
print("Finding period of f(x) = a^x mod N")
print("Example: f(x) = 2^x mod 15")
# This is a simplified demonstration of the quantum part
# Real Shor's algorithm would require many more qubits
n_qubits = 4
qc = QuantumCircuit(n_qubits, n_qubits)
# Step 1: Create superposition
for i in range(n_qubits):
qc.h(i)
qc.barrier()
# Step 2: Apply oracle (simplified - would be modular exponentiation)
# For demonstration, we create a periodic pattern
qc.cp(pi/4, 0, 1)
qc.cp(pi/2, 0, 2)
qc.cp(pi, 0, 3)
qc.barrier()
# Step 3: Apply QFT
qft = create_qft_circuit(n_qubits)
qc.compose(qft, inplace=True)
qc.barrier()
# Step 4: Measure
qc.measure_all()
print("Simplified Shor's Circuit:")
print(qc.draw())
# Simulate
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1024)
result = job.result()
counts = result.get_counts()
print("Period Detection Results:")
for state, count in sorted(counts.items(), key=lambda x: x[1], reverse=True)[:5]:
print(f"|{state}⟩: {count} times ({count/1024:.1%})")
return qc, counts
def qft_applications_overview():
"""Overview of QFT applications in quantum algorithms"""
print("\nQFT Applications in Quantum Computing")
print("=" * 50)
applications = {
"Shor's Algorithm": {
"purpose": "Integer factorization",
"qft_role": "Period finding in modular arithmetic",
"impact": "Breaks RSA encryption",
"complexity": "Exponential speedup over classical"
},
"Quantum Phase Estimation": {
"purpose": "Estimate eigenvalues of unitary operators",
"qft_role": "Extract phase information from quantum states",
"impact": "Foundation for many quantum algorithms",
"complexity": "Quadratically fewer measurements"
},
"HHL Algorithm": {
"purpose": "Solve linear systems Ax = b",
"qft_role": "Eigenvalue extraction and inversion",
"impact": "Exponential speedup for sparse matrices",
"complexity": "O(log N) vs O(N) classical"
},
"Quantum Simulation": {
"purpose": "Simulate quantum many-body systems",
"qft_role": "Time evolution and spectroscopy",
"impact": "Drug discovery, materials science",
"complexity": "Polynomial vs exponential scaling"
},
"Quantum Machine Learning": {
"purpose": "Feature mapping and data analysis",
"qft_role": "Quantum feature maps",
"impact": "Potential quantum advantage in ML",
"complexity": "Enhanced expressivity"
}
}
for algorithm, details in applications.items():
print(f"\n{algorithm}:")
print(f" Purpose: {details['purpose']}")
print(f" QFT Role: {details['qft_role']}")
print(f" Impact: {details['impact']}")
print(f" Advantage: {details['complexity']}")
def visualize_qft_effects():
"""Visualize how QFT transforms different input states"""
print("\nQFT Transformation Visualization")
print("=" * 40)
# Test different input states
test_states = [
("Computational |000⟩", []),
("Computational |001⟩", [0]),
("Computational |010⟩", [1]),
("Computational |111⟩", [0, 1, 2]),
("Superposition H⊗3|000⟩", "hadamard_all")
]
results = {}
for state_name, preparation in test_states:
qc = QuantumCircuit(3, 3)
# Prepare input state
if preparation == "hadamard_all":
qc.h([0, 1, 2])
else:
for qubit in preparation:
qc.x(qubit)
qc.barrier()
# Apply QFT
qft = create_qft_circuit(3)
qc.compose(qft, inplace=True)
qc.barrier()
# Measure
qc.measure_all()
# Simulate
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1024)
result = job.result()
counts = result.get_counts()
results[state_name] = counts
print(f"\nInput: {state_name}")
print("QFT Output Distribution:")
for state, count in sorted(counts.items())[:4]: # Show top 4
print(f" |{state}⟩: {count/1024:.3f}")
return results
# Advanced QFT techniques
def approximate_qft():
"""Demonstrate approximate QFT with reduced gate count"""
print("\nApproximate QFT - Reducing Circuit Depth")
print("=" * 50)
def create_approximate_qft(n_qubits, approximation_degree=2):
"""Create QFT with limited controlled rotation precision"""
qc = QuantumCircuit(n_qubits)
for j in range(n_qubits):
qc.h(j)
for k in range(min(approximation_degree, n_qubits - j - 1)):
qc.cp(pi/2**(k+1), j+k+1, j)
# Swap qubits
for i in range(n_qubits//2):
qc.swap(i, n_qubits-i-1)
return qc
# Compare exact vs approximate QFT
n_qubits = 4
exact_qft = create_qft_circuit(n_qubits)
approx_qft = create_approximate_qft(n_qubits, approximation_degree=2)
print(f"Exact QFT depth: {exact_qft.depth()}")
print(f"Approximate QFT depth: {approx_qft.depth()}")
print(f"Gate count reduction: {(1 - approx_qft.count_ops().get('cp', 0) / exact_qft.count_ops().get('cp', 1)):.1%}")
return exact_qft, approx_qft
if __name__ == "__main__":
# Run all demonstrations
qft_circuit, qft_counts = demonstrate_qft_3qubits()
phase_circuit, phase_counts = quantum_phase_estimation()
shor_circuit, shor_counts = shor_algorithm_demo()
qft_applications_overview()
visualization_results = visualize_qft_effects()
exact_qft, approx_qft = approximate_qft()
Quantum Phase Estimation: QFT’s Most Important Application
Quantum Phase Estimation (QPE) leverages QFT to extract eigenvalue information from quantum systems. This protocol forms the foundation for numerous quantum algorithms:
The QPE Protocol
|0⟩^⊗n ——[H]^⊗n——[Controlled-U^{2^j}]——[QFT†]——[Measure]
↑
|ψ⟩ ————————————————————————————————————————————————
Steps:
- Initialization: Prepare eigenstate
|ψ⟩
and ancilla qubits in superposition - Controlled Evolution: Apply powers of unitary U controlled by ancilla qubits
- Inverse QFT: Extract phase information encoded in quantum amplitudes
- Measurement: Read out the eigenvalue estimate
Mathematical Precision
With n ancilla qubits, QPE estimates eigenvalues with precision:
- Success probability:
≥ 1 - ε
for phase estimates within δ of true value - Required qubits:
n = log₂(2 + 1/(2δ)) + log₂(2/ε)
Shor’s Algorithm: QFT’s Crown Jewel
Shor’s algorithm uses QFT for period finding, the quantum subroutine that enables efficient integer factorization:
The Period Finding Problem
Given function f(x) = aˣ mod N
, find the period r such that f(x+r) = f(x)
.
Quantum Period Finding Steps:
- Superposition: Create uniform superposition over input domain
- Oracle: Compute
f(x) = aˣ mod N
in quantum superposition - QFT: Apply QFT to extract periodicity information
- Classical Post-processing: Use continued fractions to find period
QFT in Quantum Machine Learning
Quantum Feature Maps
QFT enables sophisticated feature mappings:
def qft_feature_map(data, n_qubits):
"""Create QFT-based feature map for classical data"""
qc = QuantumCircuit(n_qubits)
# Encode classical data as rotation angles
for i, value in enumerate(data[:n_qubits]):
qc.ry(value * pi, i)
# Apply QFT for feature transformation
qft = create_qft_circuit(n_qubits)
qc.compose(qft, inplace=True)
return qc
Error Analysis and Mitigation
Error Mitigation Strategies
def error_mitigated_qft(circuit, backend, shots=1024):
"""Apply error mitigation to QFT results"""
from qiskit.ignis.mitigation import readout_error_source
from qiskit.compiler import transpile
# Optimize circuit for backend
optimized_circuit = transpile(circuit, backend, optimization_level=3)
# Apply readout error mitigation
# (Implementation would include calibration measurements)
return optimized_circuit
Future Directions and Research
-
Variational QFT
- Parameterized QFT circuits: Trainable QFT for optimization problems
- Hybrid algorithms: Combining QFT with classical optimization
-
NISQ applications: Near-term quantum advantage in specific domains
-
Fault-Tolerant QFT
- Error correction integration: QFT within quantum error correction codes
- Logical qubit implementation: Protecting QFT from noise
- Scalability: Maintaining performance as system size grows
Circuit Optimization
# Optimize QFT for specific backends
def optimize_qft_for_hardware(qft_circuit, backend):
from qiskit.compiler import transpile
# Consider hardware connectivity
optimized = transpile(
qft_circuit,
backend,
optimization_level=3,
routing_method='sabre',
scheduling_method='dynamical_decoupling'
)
return optimized
Conclusion
The Quantum Fourier Transform stands as one of quantum computing’s most powerful and elegant tools. Its ability to reveal hidden periodicities and extract phase information enables quantum algorithms that promise exponential advantages over classical computation.
From Shor’s world-changing factoring algorithm to quantum machine learning applications, QFT demonstrates how quantum mechanics’ strange properties become computational resources. As we advance toward fault-tolerant quantum computers, QFT-based algorithms will likely be among the first to demonstrate practical quantum advantage.
The journey from classical Fourier analysis to quantum frequency extraction illustrates quantum computing’s paradigm shift: where classical computers process information sequentially, quantum computers harness superposition and interference to process exponentially many possibilities simultaneously.
My site is free of ads and trackers. Was this post helpful to you? Why not
Reference:
- Nielsen, M. A., & Chuang, I. L. (2024). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press
- Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
- IBM Qiskit QFT Tutorial
- Quantum Computing UK - Phase Estimation Masterclass